
Henning Bordihn Non-Classical Parsing

Non-Classical Parsing

Special Course at the

Eötvös Loránd University

Henning Bordihn

Universität Potsdam
Institut für Informatik und Computational Science

Elte Budapest 1

Henning Bordihn Non-Classical Parsing

Teaching at Universities

• Mathematics, mainly Algebra

• Theoretical Computer Science

• Logic

• Programming

• Software Engineering

• Compiler (and Program Transformation)

• several special courses, (automata, formal languages, information theory, ...)

Elte Budapest 2

Henning Bordihn Non-Classical Parsing

• This course is financially supported by the Erasmus program of the EU.

• Contracts with the University of Potsdam exist.

• It is also open for students. You may spend a term or two in Potsdam.

Potsdam, the center of Prussian
kings, is a direct neighbour of the
city of Berlin.

Elte Budapest 3

Henning Bordihn Non-Classical Parsing

Outline

1. Non-context-free phenomena

2. Non-context-free descriptors

3. Efficient parsing algorithms for non-context-free mechanisms

(for CD grammar systems)

4. Summary

Elte Budapest 4

Henning Bordihn Non-Classical Parsing

Outline

1. Non-context-free phenomena

2. Non-context-free descriptors

3. Efficient parsing algorithms for non-context-free mechanisms

(for CD grammar systems)

4. Summary

Elte Budapest 4

Henning Bordihn Non-Classical Parsing

Non-Context-Free Phenomena

• Programming languages

• Linguistics

• Developmental biology

• Molecular genetics

• Logic (language of tautologies)

• Economic modeling (workflows)

• ...

Elte Budapest 5

Henning Bordihn Non-Classical Parsing

Non-Context-Free Phenomena

• Programming languages

• Linguistics

• Developmental biology

• Molecular genetics

• Logic (language of tautologies)

• Economic modeling (workflows)

• ...

Elte Budapest 5

Henning Bordihn Non-Classical Parsing

Programming Languages: Static Semantic Constraints

• Consider the language of all executable Java programs LJava.

• Assume LJava be context-free.

• Further consider the following regular language R:

class A {

int x(0|1)*;

public static void main(String[] args) {

System.out.println(x(0|1)*);

}

}

Elte Budapest 6

Henning Bordihn Non-Classical Parsing

Programming Languages: Static Semantic Constraints

• Consider the language of all executable Java programs LJava.

• Assume LJava be context-free.

• Further consider the following regular language R:

class A {

int x(0|1)*;

public static void main(String[] args) {

System.out.println(x(0|1)*);

}

}

Elte Budapest 6

Henning Bordihn Non-Classical Parsing

Programming Languages: Static Semantic Constraints

• Known fact: LJava ∩R is context-free

• Consider the homomorphism h with

h(0) = 0
h(1) = 1
h(·) = ε

• Known fact: h(LJava ∩R) is context-free

• However, h(LJava ∩R) = {ww | w ∈ {0, 1}∗ }
is not context-free, a contradiction.

Elte Budapest 7

Henning Bordihn Non-Classical Parsing

Programming Languages: Static Semantic Constraints

• Known fact: LJava ∩R is context-free

• Consider the homomorphism h with

h(0) = 0
h(1) = 1
h(·) = ε

• Known fact: h(LJava ∩R) is context-free

• However, h(LJava ∩R) = {ww | w ∈ {0, 1}∗ }
is not context-free, a contradiction.

Elte Budapest 7

Henning Bordihn Non-Classical Parsing

Programming Languages: Static Semantic Constraints

• Known fact: LJava ∩R is context-free

• Consider the homomorphism h with

h(0) = 0
h(1) = 1
h(·) = ε

• Known fact: h(LJava ∩R) is context-free

• However, h(LJava ∩R) = {ww | w ∈ {0, 1}∗ }
is not context-free, a contradiction.

Elte Budapest 7

Henning Bordihn Non-Classical Parsing

Linguistics: Swiss German Word Order

• Jan säit das mer em Hans es huus hälfed aastriiche.
John said that we Hans the house helped paint.
John said that we helped Hans paint the house.

• Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.
John said that we the children Hans the house let help paint.
John said that we let the children help Hans paint the house.

• Jan säit das mer (d’chind)i (em Hans)j es huus haend wele
(laa)i (hälfe)j aastriiche.
John said that we (the children)i (Hans)j the house have wanted to
(let)i (help)j paint.
John said that we wanted to let Mary help Hans, Frank help Jessica,

Chris help Lucy, and Vanessa help René paint the house.

Elte Budapest 8

Henning Bordihn Non-Classical Parsing

Linguistics: Swiss German Word Order

• Jan säit das mer em Hans es huus hälfed aastriiche.
John said that we Hans the house helped paint.
John said that we helped Hans paint the house.

• Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.
John said that we the children Hans the house let help paint.
John said that we let the children help Hans paint the house.

• Jan säit das mer (d’chind)i (em Hans)j es huus haend wele
(laa)i (hälfe)j aastriiche.
John said that we (the children)i (Hans)j the house have wanted to
(let)i (help)j paint.
John said that we wanted to let Mary help Hans, Frank help Jessica,

Chris help Lucy, and Vanessa help René paint the house.

Elte Budapest 8

Henning Bordihn Non-Classical Parsing

Linguistics: Swiss German Word Order

• Jan säit das mer em Hans es huus hälfed aastriiche.
John said that we Hans the house helped paint.
John said that we helped Hans paint the house.

• Jan säit das mer d’chind em Hans es huus lönd hälfe aastriiche.
John said that we the children Hans the house let help paint.
John said that we let the children help Hans paint the house.

• Jan säit das mer (d’chind)i (em Hans)j es huus haend wele
(laa)i (hälfe)j aastriiche.
John said that we (the children)i (Hans)j the house have wanted to
(let)i (help)j paint.
John said that we wanted to let Mary help Hans, Frank help Jessica,

Chris help Lucy, and Vanessa help René paint the house.

Elte Budapest 8

Henning Bordihn Non-Classical Parsing

Linguistics: Swiss German Word Order

• Mapping:

– accusative case objects (d’chind) to a,
– dative case objects (Hans) to b,
– verbs requiring accusative case (laa), to c,
– verbs requiring dative case (hälfe), to d,
– erase everything else,

Result: aibjcidj for all sentences of this form:

{ aibjcidj | i ≥ 1, j ≥ 1 }

• If the verbs requiring accusative and dative case are mapped to a and b,
respectively, then a subset of

{ww | w ∈ {a, b}+, |w| ≥ 2 } is obtained.

Elte Budapest 9

Henning Bordihn Non-Classical Parsing

Linguistics: Swiss German Word Order

• Mapping:

– accusative case objects (d’chind) to a,
– dative case objects (Hans) to b,
– verbs requiring accusative case (laa), to c,
– verbs requiring dative case (hälfe), to d,
– erase everything else,

Result: aibjcidj for all sentences of this form:

{ aibjcidj | i ≥ 1, j ≥ 1 }

• If the verbs requiring accusative and dative case are mapped to a and b,
respectively, then a subset of

{ww | w ∈ {a, b}+, |w| ≥ 2 } is obtained.

Elte Budapest 9

Henning Bordihn Non-Classical Parsing

Developmental Biology: Cell Division

• Growth/Development of organisms (cell division):

A → BB

• Performed (almost) in parallel

• Sentential form A A A A
should rewrite to BBBBBBBB

• Non-context-freeness due to exponential growth

Elte Budapest 10

Henning Bordihn Non-Classical Parsing

Frontiers of classical grammar models

• What we have seen:

For several application areas, context-free grammars are not enough to model
all relevant aspects.

• What can we do?

– Like in Compilers: exclude those aspects from the syntax spacification
and use static semantics (rules of well-formedness instead).

– Use more powerfull mechanisms.

• Can we use type-1 or type-0 grammars?

In principle yes, but those mechanisms are not feasible.

→֒ Different approaches?!

Elte Budapest 11

Henning Bordihn Non-Classical Parsing

Frontiers of classical grammar models

• What we have seen:

For several application areas, context-free grammars are not enough to model
all relevant aspects.

• What can we do?

– Like in Compilers: exclude those aspects from the syntax spacification
and use static semantics (rules of well-formedness instead).

– Use more powerfull mechanisms.

• Can we use type-1 or type-0 grammars?

In principle yes, but those mechanisms are not feasible.

→֒ Different approaches?!

Elte Budapest 11

Henning Bordihn Non-Classical Parsing

Frontiers of classical grammar models

• What we have seen:

For several application areas, context-free grammars are not enough to model
all relevant aspects.

• What can we do?

– Like in Compilers: exclude those aspects from the syntax spacification
and use static semantics (rules of well-formedness instead).

– Use more powerfull mechanisms.

• Can we use type-1 or type-0 grammars?

In principle yes, but those mechanisms are not feasible.

→֒ Different approaches?!

Elte Budapest 11

Henning Bordihn Non-Classical Parsing

Frontiers of classical grammar models

• What we have seen:

For several application areas, context-free grammars are not enough to model
all relevant aspects.

• What can we do?

– Like in Compilers: exclude those aspects from the syntax spacification
and use static semantics (rules of well-formedness instead).

– Use more powerfull mechanisms.

• Can we use type-1 or type-0 grammars?

In principle yes, but those mechanisms are not feasible.

→֒ Different approaches?!

Elte Budapest 11

Henning Bordihn Non-Classical Parsing

Outline

1. Non-context-free phenomena

2. Non-context-free descriptors

3. Efficient parsing algorithms for non-context-free mechanisms

(for CD grammar systems)

4. Summary

Elte Budapest 12

Henning Bordihn Non-Classical Parsing

Adding to the power of context-free mechanisms

• Controlled derivations
Ruling out derivations according to certain criteria

• Parallel derivations (Lindenmayer systems)
Iterated finite substitutions/homomorphisms

• Mildly context-sensitive mechanisms
TAGs, Head-Grammars, combinatory categorial grammars etc.

• Grammar systems
Cooperation of several context-free grammars

Elte Budapest 13

Henning Bordihn Non-Classical Parsing

Adding to the power of context-free mechanisms

• Controlled derivations
Ruling out derivations according to certain criteria

• Parallel derivations (Lindenmayer systems)
Iterated finite substitutions/homomorphisms

• Mildly context-sensitive mechanisms
TAGs, Head-Grammars, combinatory categorial grammars etc.

• Grammar systems
Cooperation of several context-free grammars

Elte Budapest 13

Henning Bordihn Non-Classical Parsing

Adding to the power of context-free mechanisms

• Controlled derivations
Ruling out derivations according to certain criteria

• Parallel derivations (Lindenmayer systems)
Iterated finite substitutions/homomorphisms

• Mildly context-sensitive mechanisms
TAGs, Head-Grammars, combinatory categorial grammars etc.

• Grammar systems
Cooperation of several context-free grammars

Elte Budapest 13

Henning Bordihn Non-Classical Parsing

Adding to the power of context-free mechanisms

• Controlled derivations
Ruling out derivations according to certain criteria

• Parallel derivations (Lindenmayer systems)
Iterated finite substitutions/homomorphisms

• Mildly context-sensitive mechanisms
TAGs, Head-Grammars, combinatory categorial grammars etc.

• Grammar systems
Cooperation of several context-free grammars

Elte Budapest 13

Henning Bordihn Non-Classical Parsing

Controlled Derivations—Example

Matrix grammars [Ábrahám (1965)]

• Line up rules to finite sequences, e.g.:

(S → AB), (A → aAb, B → cB), (A → ab, B → c) → { anbncn | n ≥ 1 }

• Appearance checking (ac): set of occurrences of rules that can be left out
if not applicable to the sentential form (here: empty)

Elte Budapest 14

Henning Bordihn Non-Classical Parsing

Controlled Derivations—Example

Matrix grammars [Ábrahám (1965)]

• Line up rules to finite sequences, e.g.:

(S → AB), (A → aAb, B → cB), (A → ab, B → c) → { anbncn | n ≥ 1 }

• Appearance checking (ac): set of occurrences of rules that can be left out
if not applicable to the sentential form (here: empty)

Elte Budapest 14

Henning Bordihn Non-Classical Parsing

Parallel Derivations—Lindenmayer systems

• Modeling of biological developmental processes [Lindenmayer 68], ...

• All symbols can be rewritten

• Parallel replacements of all symbols

• Example: { a2
n
| n ≥ 0 } with a → a2

a =⇒ aa =⇒ aaaa =⇒ a8 =⇒ a16 =⇒ . . .

Elte Budapest 15

Henning Bordihn Non-Classical Parsing

Selected Applications

Reference:

Przemyslaw Prusinkiewicz, Aristid Lindenmayer,
The Algorithmic Beauty of Plants, Springer 1990.

Elte Budapest 16

Henning Bordihn Non-Classical Parsing

Fractals

Elte Budapest 17

Henning Bordihn Non-Classical Parsing

Turtle Graphic

α, δ two angles

α initial angle with x-axis

F draw line of unit length ”‘straightforward”’

+ change direction by +δ

- change direction by −δ

Elte Budapest 18

Henning Bordihn Non-Classical Parsing

Fractals (2)

Elte Budapest 19

Henning Bordihn Non-Classical Parsing

Fractals (3)

Elte Budapest 20

Henning Bordihn Non-Classical Parsing

Graphical Interpretation with Stack Operations

[push turtle state onto stack

] pop state from stack and set turtle to this state
(by moving turtle without drawing a line)

Elte Budapest 21

Henning Bordihn Non-Classical Parsing

Branching Structures (1)

Elte Budapest 22

Henning Bordihn Non-Classical Parsing

Branching Structures (2)

Elte Budapest 23

Henning Bordihn Non-Classical Parsing

Three-Dimensional Graphics with Textures

Elte Budapest 24

Henning Bordihn Non-Classical Parsing

Three-Dimensional Graphics with Textures (2)

Elte Budapest 25

Henning Bordihn Non-Classical Parsing

Parametrized Descriptions

Elte Budapest 26

Henning Bordihn Non-Classical Parsing

Lindenmayer Systems: Variants

Determinism exactly one rule per symbol →֒ iterated homomorphisms
Tables several rule sets

Extension auxiliary symbols
Adult ruling out all fixed points

...

ET0L systems — nondeterministic extended tabled L systems

0: applicability of rules depends on zero neighbouring symbols
(context-free derivation)

Elte Budapest 27

Henning Bordihn Non-Classical Parsing

Lindenmayer Systems: Variants

Determinism exactly one rule per symbol →֒ iterated homomorphisms
Tables several rule sets

Extension auxiliary symbols
Adult ruling out all fixed points

...

ET0L systems — nondeterministic extended tabled L systems

0: applicability of rules depends on zero neighbouring symbols
(context-free derivation)

Elte Budapest 27

Henning Bordihn Non-Classical Parsing

Grammar Systems (GS)

• Idea: Several context-free grammars (components) jointly
generate the strings of the language.

• CD-GS: Sequential cooperation [Csuhaj-Várju, Dassow (1992)]

working on a common sentential form in turns

– Distributed problem solving in blackboard architectures
– Multi-level grammars [Meersman, Rozenberg (1978)]

– Sequential analogue to tabled Lindenmayer systems
[Bordihn, Csuhaj-Varjú, Dassow (1997)]

• PC-GS: Parallel cooperation [Păun, Sântean (1989)]

autonomous, synchronized derivations and communication of sentential forms
upon request (by particular nonterminal symbols)

Elte Budapest 28

Henning Bordihn Non-Classical Parsing

Grammar Systems (GS)

• Idea: Several context-free grammars (components) jointly
generate the strings of the language.

• CD-GS: Sequential cooperation [Csuhaj-Várju, Dassow (1992)]

working on a common sentential form in turns

– Distributed problem solving in blackboard architectures
– Multi-level grammars [Meersman, Rozenberg (1978)]

– Sequential analogue to tabled Lindenmayer systems
[Bordihn, Csuhaj-Varjú, Dassow (1997)]

• PC-GS: Parallel cooperation [Păun, Sântean (1989)]

autonomous, synchronized derivations and communication of sentential forms
upon request (by particular nonterminal symbols)

Elte Budapest 28

Henning Bordihn Non-Classical Parsing

Grammar Systems (GS)

• Idea: Several context-free grammars (components) jointly
generate the strings of the language.

• CD-GS: Sequential cooperation [Csuhaj-Várju, Dassow (1992)]

working on a common sentential form in turns

– Distributed problem solving in blackboard architectures
– Multi-level grammars [Meersman, Rozenberg (1978)]

– Sequential analogue to tabled Lindenmayer systems
[Bordihn, Csuhaj-Varjú, Dassow (1997)]

• PC-GS: Parallel cooperation [Păun, Sântean (1989)]

autonomous, synchronized derivations and communication of sentential forms
upon request (by particular nonterminal symbols)

Elte Budapest 28

Henning Bordihn Non-Classical Parsing

CD Grammar Systems—Definition

• A context-free CDGS of degree n is a tuple

Γ = (N,T, S, P1, P2, . . . , Pn)

– N is a finite set of nonterminal symbols,
– T is a finite set of terminal symbols
– S ∈ N (axiom),
– Pi (1 ≤ i ≤ n) is a finite set of context-free productions of the form A → α,

A ∈ N , α ∈ (N ∪ T)∗

→֒ Each (N,T, S, Pi) (1 ≤ i ≤ n) is a context-free grammar (component).

• x =⇒i y iff x = γ1αγ2, y = γ1βγ2, α → β ∈ Pi

Elte Budapest 29

Henning Bordihn Non-Classical Parsing

CD Grammar Systems—Definition

• A context-free CDGS of degree n is a tuple

Γ = (N,T, S, P1, P2, . . . , Pn)

– N is a finite set of nonterminal symbols,
– T is a finite set of terminal symbols
– S ∈ N (axiom),
– Pi (1 ≤ i ≤ n) is a finite set of context-free productions of the form A → α,

A ∈ N , α ∈ (N ∪ T)∗

→֒ Each (N,T, S, Pi) (1 ≤ i ≤ n) is a context-free grammar (component).

• x =⇒i y iff x = γ1Aγ2, y = γ1αγ2, A → α ∈ Pi

Elte Budapest 29

Henning Bordihn Non-Classical Parsing

Cooperation Strategies

• Components work sequentially (in turns) on a common sentential form

• are activated in a nondeterministic way

Derivation Number of steps to be performed
mode (of a component, once activated)

∗-mode arbitrary

=m-mode exactly m

≤m-mode at most m

≥m-mode at least m

t-mode as many as possible

full-mode until a nonterminal has been introduced
that the component cannot replace

Elte Budapest 30

Henning Bordihn Non-Classical Parsing

Cooperation Strategies

• Components work sequentially (in turns) on a common sentential form

• are activated in a nondeterministic way

Derivation Number of steps to be performed
mode (of a component, once activated)

∗-mode arbitrary

=m-mode exactly m

≤m-mode at most m

≥m-mode at least m

t-mode as many as possible

full-mode until a nonterminal has been introduced
that the component cannot replace

Elte Budapest 30

Henning Bordihn Non-Classical Parsing

• x
=m
=⇒i y iff x = x0 =⇒i x1 =⇒i · · · =⇒i xm = y

• x
t

=⇒i y iff x
∗

=⇒i y and there is no z such that y =⇒i z

• For µ ∈ {=m, t | m ≥ 1 }:

L(Γ, µ) = {w ∈ T ∗ | S
µ

=⇒i1 v1
µ

=⇒i2 . . .
µ

=⇒iℓ w,

ℓ ≥ 1, 1 ≤ ij ≤ n for 1 ≤ j ≤ ℓ }

Example: P1 = {S → S, S → AB}
P2 = {A → aA′, B → cB′} P3 = {A → A′b, B → B′d}
P4 = {A′ → A, B′ → B} P5 = {A → λ, B → λ}

L(Γ,=2) = L(Γ, t) = { aibjcidj | i, j ≥ 0 }

Elte Budapest 31

Henning Bordihn Non-Classical Parsing

• x
=m
=⇒i y iff x = x0 =⇒i x1 =⇒i · · · =⇒i xm = y

• x
t

=⇒i y iff x
∗

=⇒i y and there is no z such that y =⇒i z

• For µ ∈ {=m, t | m ≥ 1 }:

L(Γ, µ) = {w ∈ T ∗ | S
µ

=⇒i1 v1
µ

=⇒i2 . . .
µ

=⇒iℓ w,

ℓ ≥ 1, 1 ≤ ij ≤ n for 1 ≤ j ≤ ℓ }

Example: P1 = {S → S, S → AB}
P2 = {A → aA′, B → cB′} P3 = {A → A′b, B → B′d}
P4 = {A′ → A, B′ → B} P5 = {A → λ, B → λ}

L(Γ,=2) = L(Γ, t) = { aibjcidj | i, j ≥ 0 }

Elte Budapest 31

Henning Bordihn Non-Classical Parsing

• x
=m
=⇒i y iff x = x0 =⇒i x1 =⇒i · · · =⇒i xm = y

• x
t

=⇒i y iff x
∗

=⇒i y and there is no z such that y =⇒i z

• For µ ∈ {=m, t | m ≥ 1 }:

L(Γ, µ) = {w ∈ T ∗ | S
µ

=⇒i1 v1
µ

=⇒i2 . . .
µ

=⇒iℓ w,

ℓ ≥ 1, 1 ≤ ij ≤ n for 1 ≤ j ≤ ℓ }

Example: P1 = {S → S, S → AB}
P2 = {A → aA′, B → cB′} P3 = {A → A′b, B → B′d}
P4 = {A′ → A, B′ → B} P5 = {A → λ, B → λ}

L(Γ,=2) = L(Γ, t) = { aibjcidj | i, j ≥ 0 }

Elte Budapest 31

Henning Bordihn Non-Classical Parsing

Outline

1. Non-context-free phenomena

2. Non-context-free descriptors

3. Efficient parsing algorithms for non-context-free mechanisms

(for CD grammar systems)

4. Summary

Elte Budapest 32

Henning Bordihn Non-Classical Parsing

The Goal

• Restricting CDGS (in t- and =m-modes) such that

– efficient top-down parsing becomes possible

→֒ deterministic one-way parsing without backtracking (here: top-down),

– important non-context-free languages can be generated

∗ Removing nondeterminism:

– Leftmost derivations
– LL(k)-condition

Elte Budapest 33

Henning Bordihn Non-Classical Parsing

The Goal

• Restricting CDGS (in t- and =m-modes) such that

– efficient top-down parsing becomes possible

→֒ deterministic one-way parsing without backtracking (here: top-down),

– important non-context-free languages can be generated

∗ Removing nondeterminism:

– Leftmost derivations
– LL(k)-condition

Elte Budapest 33

Henning Bordihn Non-Classical Parsing

Leftmost Derivations

• strong leftmost mode (x
µ

=⇒
s i y):

always replace the leftmost nonterminal in the sentential form

→֒ leads to the family of context-free languages (in any derivation mode)

• Domain of component Pi, 1 ≤ i ≤ n:

dom(Pi) = {A | A → α ∈ Pi for some α }

• weak leftmost mode (x
µ

=⇒
w i y):

– When no component has been activated yet (in the first step of some Pi):
always replace the leftmost nonterminal in the sentential form

– If the component Pi is already active: always replace the leftmost symbol
in the sentential form that is from the domain dom(Pi)

Elte Budapest 34

Henning Bordihn Non-Classical Parsing

Leftmost Derivations

• strong leftmost mode (x
µ

=⇒
s i y):

always replace the leftmost nonterminal in the sentential form

→֒ leads to the family of context-free languages (in any derivation mode)

• Domain of component Pi, 1 ≤ i ≤ n:

dom(Pi) = {A | A → α ∈ Pi for some α }

• weak leftmost mode (x
µ

=⇒
w i y):

– When no component has been activated yet (in the first step of some Pi):
always replace the leftmost nonterminal in the sentential form

– If the component Pi is already active: always replace the leftmost symbol
in the sentential form that is from the domain dom(Pi)

Elte Budapest 34

Henning Bordihn Non-Classical Parsing

Leftmost Derivations

• strong leftmost mode (x
µ

=⇒
s i y):

always replace the leftmost nonterminal in the sentential form

→֒ leads to the family of context-free languages (in any derivation mode)

• Domain of component Pi, 1 ≤ i ≤ n:

dom(Pi) = {A | A → α ∈ Pi for some α }

• weak leftmost mode (x
µ

=⇒
w i y):

– When no component has been activated yet (in the first step of some Pi):
always replace the leftmost nonterminal in the sentential form

– If the component Pi is already active: always replace the leftmost symbol
in the sentential form that is from the domain dom(Pi)

Elte Budapest 34

Henning Bordihn Non-Classical Parsing

LL(k) condition for CDGS

Given: 1) CDGS Γ, γ ∈ {s,w}, µ ∈ { t, =m | m ≥ 1 }

2) Input to be analyzed w = a1a2 . . . as ∈ T ∗

Question: Does w ∈ Lγ(Γ, µ) hold?

Goal: Re-construction of a leftmost derivation
leading from S to w if w ∈ Lγ(Γ, µ)

Let S
µ

=⇒
γ i1 . . .

µ
=⇒

γ ij a1a2 . . . arAy be already analyzed (y ∈ V ∗).

LL(k) condition: Then the next k input symbols (tokens)
ar+1 . . . ar+k (look-ahead)

determine the unique next derivation step
µ

=⇒
γ ij+1

Elte Budapest 35

Henning Bordihn Non-Classical Parsing

LL(k) condition for CDGS

Given: 1) CDGS Γ, γ ∈ {s,w}, µ ∈ { t, =m | m ≥ 1 }

2) Input to be analyzed w = a1a2 . . . as ∈ T ∗

Question: Does w ∈ Lγ(Γ, µ) hold?

Goal: Re-construction of a leftmost derivation
leading from S to w if w ∈ Lγ(Γ, µ)

Let S
µ

=⇒
γ i1 . . .

µ
=⇒

γ ij a1a2 . . . arAy be already analyzed (y ∈ V ∗).

LL(k) condition: Then the next k input symbols (tokens)
ar+1 . . . ar+k (look-ahead)

determine the unique next derivation step
µ

=⇒
γ ij+1

Elte Budapest 35

Henning Bordihn Non-Classical Parsing

LL(k) condition for CDGS

Given: 1) CDGS Γ, γ ∈ {s,w}, µ ∈ { t, =m | m ≥ 1 }

2) Input to be analyzed w = a1a2 . . . as ∈ T ∗

Question: Does w ∈ Lγ(Γ, µ) hold?

Goal: Re-construction of a leftmost derivation
leading from S to w if w ∈ Lγ(Γ, µ)

Let S
µ

=⇒
γ i1 . . .

µ
=⇒

γ ij a1a2 . . . arAy be already analyzed (y ∈ V ∗).

LL(k) condition: Then the next k input symbols (tokens)
ar+1 . . . ar+k (look-ahead)

determine the unique next derivation step
µ

=⇒
γ ij+1

Elte Budapest 35

Henning Bordihn Non-Classical Parsing

Context-Free LL(k) Parsing
Is using look-ahead k > 1 an issue?

• LL(1) ⊂ LL(2) ⊂ LL(3) ⊂ . . .

• Look, for example, at the following grammar:

V ar → SimpleV ar | IndexedV ar
SimpleV ar → Idf
IndexedV ar → Idf[Expr]

• V ar-rule requires look-ahead of size 2

• Can hardly be improved since SimpleV ar is likely to be used
in many other rules

Elte Budapest 36

Henning Bordihn Non-Classical Parsing

Context-Free LL(k) Parsing
Is using look-ahead k > 1 an issue?

• LL(1) ⊂ LL(2) ⊂ LL(3) ⊂ . . .

• Look, for example, at the following grammar:

V ar → SimpleV ar | IndexedV ar
SimpleV ar → Idf
IndexedV ar → Idf[Expr]

V ar-rule requires look-ahead of size 2

Can hardly be improved since SimpleV ar is likely to be used
in many other rules

Elte Budapest 36

Henning Bordihn Non-Classical Parsing

Context-Free LL(k) Parsing
Is using look-ahead k > 1 an issue?

• LL(1) ⊂ LL(2) ⊂ LL(3) ⊂ . . .

• Look, for example, at the following grammar:

V ar → SimpleV ar | IndexedV ar
SimpleV ar → Idf
IndexedV ar → Idf[Expr]

• V ar-rule requires look-ahead of size 2

• Can hardly be improved since SimpleV ar is likely to be used
in many other rules

Elte Budapest 36

Henning Bordihn Non-Classical Parsing

LL(k) Parsing Tables

• Like LL(1) parsing tables,
but provide a column for any token string of length ≤ k

• Generalize First and Follow sets to FIRSTk(X) and FOLLOWk(X)

• Naive approach: For each production A → α do:
For each w ∈ FIRSTk(FIRSTk(α)FOLLOWk(A)), set
T [A,w] = A → α.

• Unfortunately, this works only for strong LL(k) grammars.

• Every LL(1) grammar is strong LL(1),
but strongness is a restriction for LL(k) grammars if k > 1

Elte Budapest 37

Henning Bordihn Non-Classical Parsing

LL(k) Parsing Tables

• Like LL(1) parsing tables,
but provide a column for any token string of length ≤ k

• Generalize First and Follow sets to FIRSTk(X) and FOLLOWk(X)

• Naive approach: For each production A → α do:
For each w ∈ FIRSTk(FIRSTk(α)FOLLOWk(A)), set
T [A,w] = A → α.

• Unfortunately, this works only for strong LL(k) grammars.

• Every LL(1) grammar is strong LL(1),
but strongness is a restriction for LL(k) grammars if k > 1

Elte Budapest 37

Henning Bordihn Non-Classical Parsing

LL(k) Parsing Tables

• Like LL(1) parsing tables,
but provide a column for any token string of length ≤ k

• Generalize First and Follow sets to FIRSTk(X) and FOLLOWk(X)

• Naive approach: For each production A → α do:
For each w ∈ FIRSTk(FIRSTk(α)FOLLOWk(A)), set
T [A,w] = A → α.

• Unfortunately, this works only for strong LL(k) grammars.

• Every LL(1) grammar is strong LL(1),
but strongness is a restriction for LL(k) grammars if k > 1

Elte Budapest 37

Henning Bordihn Non-Classical Parsing

LL(k) Parsing Tables

• Like LL(1) parsing tables,
but provide a column for any token string of length ≤ k

• Generalize First and Follow sets to FIRSTk(X) and FOLLOWk(X)

• Naive approach: For each production A → α do:
For each w ∈ FIRSTk(FIRSTk(α)FOLLOWk(A)), set
T [A,w] = A → α.

• Unfortunately, this works only for strong LL(k) grammars.

• Every LL(1) grammar is strong LL(1),
but strongness is a restriction for LL(k) grammars if k > 1.

Elte Budapest 37

Henning Bordihn Non-Classical Parsing

LL(2) versus Strong LL(2)

• CFG
S → aAaa | bAba
A → b | ε

results in {aaa, abaa, bba, bbba}

• Intuitively LL(2):
two symbols of look-ahead are enough to predict the production

• Is not strong LL(2) since
T [A, ba] = {b, ε}.

• Construction of strong LL(2) tables disregards“history” of derivation

• Can be fixed by using distinct copies of A1 and A2 of A

Elte Budapest 38

Henning Bordihn Non-Classical Parsing

LL(2) versus Strong LL(2)

• CFG
S → aAaa | bAba
A → b | ε

results in {aaa, abaa, bba, bbba}

• Intuitively LL(2):
two symbols of look-ahead are enough to predict the production

• Is not strong LL(2) since
T [A, ba] = {b, ε}.

• Construction of strong LL(2) tables disregards“history” of derivation

• Can be fixed by using distinct copies of A1 and A2 of A

Elte Budapest 38

Henning Bordihn Non-Classical Parsing

LL(2) versus Strong LL(2)

• CFG
S → aAaa | bAba
A → b | ε

results in {aaa, abaa, bba, bbba}

• Intuitively LL(2):
two symbols of look-ahead are enough to predict the production

• Is not strong LL(2) since
T [A, ba] = {b, ε}.

• Construction of strong LL(2) tables disregards“history” of derivation

• Can be fixed by using distinct copies of A1 and A2 of A

Elte Budapest 38

Henning Bordihn Non-Classical Parsing

LL(2) versus Strong LL(2)

• CFG
S → aAaa | bAba
A → b | ε

results in {aaa, abaa, bba, bbba}

• Intuitively LL(2):
two symbols of look-ahead are enough to predict the production

• Is not strong LL(2) since
T [A, ba] = {b, ε}.

• Construction of strong LL(2) tables disregards“history” of derivation

• Can be fixed by using distinct copies of A1 and A2 of A

Elte Budapest 38

Henning Bordihn Non-Classical Parsing

Parsing Tables for CDGS

• Every element in a parsing table must determine

– the next component to be activated (its label) and
– the sequence of productions to be applied while this component is active

• Simplification: only the label of the component is needed,
if the CDGS is deterministic, i.e., each Pi contains at most one rule for every
nonterminal symbol.

Elte Budapest 39

Henning Bordihn Non-Classical Parsing

Parsing Tables for CDGS

• Every element in a parsing table must determine

– the next component to be activated (its label) and
– the sequence of productions to be applied while this component is active

• Simplification: only the label of the component is needed,
if the CDGS is deterministic, i.e., each Pi contains at most one rule for every
nonterminal symbol.

Elte Budapest 39

Henning Bordihn Non-Classical Parsing

Example

P1 = {S → S, S → AB}
P2 = {A → aA′, B → cB′} P3 = {A → A′b, B → B′d}
P4 = {A′ → A, B′ → B} P5 = {A → λ, B → λ}

Lw(Γ,=2) = Lw(Γ, t) = { aibjcidj | i, j ≥ 0 }

a b c d λ

S 1 1 − − 1

A 2 3 5 5 5

A′ 4 4 4 4 4

→֒ satisfies the condition for LL(1) CDGS

Elte Budapest 40

Henning Bordihn Non-Classical Parsing

Example

P1 = {S → S, S → AB}
P2 = {A → aA′, B → cB′} P3 = {A → A′b, B → B′d}
P4 = {A′ → A, B′ → B} P5 = {A → λ, B → λ}

Lw(Γ,=2) = Lw(Γ, t) = { aibjcidj | i, j ≥ 0 }

a b c d λ

S 1 1 − − 1

A 2 3 5 5 5

A′ 4 4 4 4 4

→֒ satisfies the condition for LL(1) CDGS

Elte Budapest 40

Henning Bordihn Non-Classical Parsing

Computational Power of LL(k) CDGS

[Bordihn, Vaszil 2007]

• One can describe:

– all context-free LL(k) languages (in =1-mode)

– { aibjcidj | i, j ≥ 0 }, {wcw | w ∈ {a, b}∗ }, { aibici | i ≥ 0 }
(using weak leftmost derivations)

– languages that are not semi-linear (using weak leftmost derivations)

• In case of weak leftmost derivations, the =2-mode is equivalent to the
=m-mode, for all m ≥ 2.

Elte Budapest 41

Henning Bordihn Non-Classical Parsing

Computational Power of LL(k) CDGS

[Bordihn, Vaszil 2007]

• One can describe:

– all context-free LL(k) languages (in =1-mode)

– { aibjcidj | i, j ≥ 0 }, {wcw | w ∈ {a, b}∗ }, { aibici | i ≥ 0 }
(using weak leftmost derivations)

– languages that are not semi-linear (using weak leftmost derivations)

• In case of weak leftmost derivations, the =2-mode is equivalent to the
=m-mode, for all m ≥ 2.

Elte Budapest 41

Henning Bordihn Non-Classical Parsing

Parsing Algorithm—Idea

• Weak leftmost derivations: symbols have to be replaced that may appear
far away from the leftmost nonterminal.

S
=2=⇒
w 1 AB

=2=⇒
w 2 aAcB

=2=⇒
w 2 . . .

=2=⇒
w 2 a

rAcrB . . .

Add Queues containing “pending productions” (together with the number of
the corresponding derivation step) to a balanced binary search tree

Remove productions from those queues when they are used later
and delete empty queues from the search tree

Control usage of productions stored in queues with the help of stacks that,
for every occurrence of a nonterminal in the sentential form, store the time
(derivation step) when it has been generated.

Elte Budapest 42

Henning Bordihn Non-Classical Parsing

Parsing Algorithm—Idea

• Weak leftmost derivations: symbols have to be replaced that may appear
far away from the leftmost nonterminal.

S
=2=⇒
w 1 AB

=2=⇒
w 2 aAcB

=2=⇒
w 2 . . .

=2=⇒
w 2 a

rAcrB . . .

• Add queues containing “pending productions” (together with the number of
the corresponding derivation step) to a balanced binary search tree

Remove productions from those queues when they are used later
and delete empty queues from the search tree

Control usage of productions stored in queues with the help of stacks that,
for every occurrence of a nonterminal in the sentential form, store the time
(derivation step) when it has been generated.

Elte Budapest 42

Henning Bordihn Non-Classical Parsing

Parsing Algorithm—Idea

• Weak leftmost derivations: symbols have to be replaced that may appear
far away from the leftmost nonterminal.

S
=2=⇒
w 1 AB

=2=⇒
w 2 aAcB

=2=⇒
w 2 . . .

=2=⇒
w 2 a

rAcrB . . .

• Add queues containing “pending productions” (together with the number of
the corresponding derivation step) to a balanced binary search tree

• Remove productions from those queues when they are used later
and delete empty queues from the search tree

Control usage of productions stored in queues with the help of stacks that,
for every occurrence of a nonterminal in the sentential form, store the time
(derivation step) when it has been generated.

Elte Budapest 42

Henning Bordihn Non-Classical Parsing

Parsing Algorithm—Idea

• Weak leftmost derivations: symbols have to be replaced that may appear
far away from the leftmost nonterminal.

S
=2=⇒
w 1 AB

=2=⇒
w 2 aAcB

=2=⇒
w 2 . . .

=2=⇒
w 2 a

rAcrB . . .

• Add queues containing “pending productions” (together with the number of
the corresponding derivation step) to a balanced binary search tree

• Remove productions from those queues when they are used later
and delete empty queues from the search tree

• Control usage of productions stored in queues with the help of stacks that,
for every occurrence of a nonterminal in the sentential form, store the time
(derivation step) when it has been generated.

Elte Budapest 42

Henning Bordihn Non-Classical Parsing

Parsing Algorithm—Result

Theorem. Let Γ be a CDGS working in =m-mode (m ≥ 2) with weak leftmost
derivaions, and let Γ satisfy the LL(k) condition for CDGS (k ≥ 1).

Given the parsing table for Γ, one can effectively construct a parser for Lw(Γ,=m).

For every input string, the parser terminates in O(n · log2 n) time, where n is the
length of the input.

Elte Budapest 43

Henning Bordihn Non-Classical Parsing

When the Parsing Table can be Constructed

• The parsing table for CDGS can be constructed if it is strong LL(k).

• A CDGS Γ = (V,Σ, S, P1, . . . , Pn) is strong-LL(k) if:

1. A → α ∈ Pi implies A → α /∈ Pj for all j 6= i
2. The CFG (V \ Σ,Σ, S,

⋃
1≤i≤nPi) is strong LL(k).

• All relevant CDGS are strong LL(k).

Elte Budapest 44

Henning Bordihn Non-Classical Parsing

When the Parsing Table can be Constructed

• The parsing table for CDGS can be constructed if it is strong LL(k).

• A CDGS Γ = (V,Σ, S, P1, . . . , Pn) is strong-LL(k) if:

1. A → α ∈ Pi implies A → α /∈ Pj for all j 6= i
2. The CFG (V \ Σ,Σ, S,

⋃
1≤i≤nPi) is strong LL(k).

• All relevant CDGS are strong LL(k).

Elte Budapest 44

Henning Bordihn Non-Classical Parsing

When the Parsing Table can be Constructed

• The parsing table for CDGS can be constructed if it is strong LL(k).

• A CDGS Γ = (V,Σ, S, P1, . . . , Pn) is strong-LL(k) if:

1. A → α ∈ Pi implies A → α /∈ Pj for all j 6= i
2. The CFG (V \ Σ,Σ, S,

⋃
1≤i≤nPi) is strong LL(k).

• All relevant CDGS are strong LL(k).

Elte Budapest 44

Henning Bordihn Non-Classical Parsing

Outline

1. Non-context-free phenomena

2. Non-context-free descriptors

3. Accepting grammars

4. Efficient parsing algorithms for non-context-free mechanisms

(for CD grammar systems)

5. Summary

Elte Budapest 45

Henning Bordihn Non-Classical Parsing

Summary

• LL(k) CDGS describe all “classical” context-free LL(k) languages as well as
crucial non-context-free languages.

• LL(k) CDGS have an efficient parser
(with O(n · log2 n) time complexity in the worst case).

• The LL(k)-hierarchy collapses for CDGS at the first level.
(Condition: Parsing table is given!)

• If a CDGS is strong-LL(k), then its parsing table can effectively be constructed.
All relevant examples are strong-LL(k).

Elte Budapest 46

